

GCE

Chemistry A

Advanced Subsidiary GCE

Unit F322: Chains, Energy and Resources

Mark Scheme for June 2013

PMT

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2013

Annotations

Annotations available in Scoris.

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
I	Ignore
NAQ	Not answered question
NBOD	Benefit of doubt not given
РОТ	Power of 10 error
^	Omission mark
RE	Rounding error
SF	Error in number of significant figures
*	Correct response
SEEN	Noted but no credit given
REP	Repeat

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

All questions should be annotated with ticks to show where marks have been awarded in the body of the text.

All questions where an ECF has been applied should also be annotated with the ECF annotation.

Use the omission mark where the answer is not sufficient to be awarded a mark.

Generic comments

ORGANIC STRUCTURES

For a 'structure' or 'structural formula',

• ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)

For an alkyl group shown within a structure,

• **ALLOW** bond drawn to C or H,

eg ALLOW CH_3 -, CH_2 -, C_3H_7 -, etc

ALLOW vertical 'bond' to any part of an alkyl group

For an OH group shown within a structure,

- DO NOT ALLOW formula with horizontal —HO OR —HO
- ALLOW vertical 'bond' to any part of the OH group

For a CHO group shown within a structure,

• DO NOT ALLOW COH

For a 3D structure,

•	For bond in the plane of paper, a solid line is expected:	
•	For bond out of plane of paper, a solid wedge is expected:	
•	For bond into plane of paper, ALLOW:	
•	ALLOW a hollow wedge for 'in bond' OR an 'out bond', provided it is different from the other in or out wedge eg:	

NAMES

Names including alkyl groups:

- ALLOW alkanyl, eg ethanyl (ie IGNORE 'an')
- **DO NOT ALLOW** alkol, eg ethol (ie 'an' is essential)

Names of esters:

- Two words are expected, eg ethyl ethanoate
- ALLOW one word, eg ethylethanoate

Names with multiple numbers and hyphens: Use of 'e'

- ALLOW superfluous 'e', eg propane-1-ol ('e' is kept if followed by consonant)
- ALLOW absence of 'e', eg propan-1,2-diol ('e' is omitted if followed by vowel)

Hyphens separate name from numbers:

• ALLOW absence of hyphens, eg propane 1,2 diol

Multiple locant numbers must be clearly separated:

- ALLOW full stops: eg 1.2 OR spaces: 1 2
- DO NOT ALLOW eg 12

Locant numbers in formula must be correct

• DO NOT ALLOW propan-3-ol

Order of substituents should be alphabetical:

• ALLOW any order (as long as unambiguous), eg 2-chloro-3-bromobutane

ABBREVIATIONS

van der Waal's forces ALLOW vdw forces OR VDW forces (and any combination of upper and lower cases)

Question		on	Answer	Marks	Guidance
1	(a)	(i)	C ₁₀ H ₂₂ ✓	1	IGNORE the name decane
		(ii)	Correct skeletal formula ✓	2	DO NOT ALLOW structural formula OR displayed formula
					Examples of skeletal formulae:
					2-methylnonane 3-methylnonane
			Correct name for structure drawn providing the structure is a branched chain isomer of $C_{10}H_{22}$ \checkmark		ALLOW name even if structural or displayed formula drawn
					DO NOT ALLOW incorrect nomenclature eg 2-ethyloctane, 6- methylnonane, 2-methnonane, 2-methylnonan, 2-methynonane
					There are many more isomers that can be drawn

Qı	lesti	on	Answer	Marks	Guidance
1	(a)	(iii)	B has less surface (area of) contact OR ORA AND B has fewer van der Waals' forces OR B has weaker van der Waals' forces OR ORA ✓	2	 Both answers need to be comparisons Assume 'it' refers to B ALLOW B has less points of contact AND fewer VDW DO NOT ALLOW less points of contact between atoms Reference to just surface area or closeness of molecules is not sufficient. IGNORE if not qualified IGNORE B more compact OR B has a shorter chain DO NOT ALLOW B is a smaller molecule DO NOT ALLOW B has fewer electrons Intermolecular forces is not sufficient for the first marking point must refer to van der Waals' ALLOW ORA throughout in terms of A if specified
			So less energy needed to break the intermolecular forces in B OR ORA \checkmark		 ALLOW in B it takes less energy to overcome the intermolecular forces ALLOW it is easier to overcome the intermolecular forces DO NOT ALLOW so less energy is needed to break bonds DO NOT ALLOW intermolecular bonds

Question		on	Answer	Marks	Guidance
1	(b)	(i)	Correct equation for the cracking of $C_{15}H_{32} \checkmark$ eg $C_{15}H_{32} \rightarrow C_{13}H_{28} + C_2H_4$	1	ALLOW molecular formula OR correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW any correct equation that has an alkane and alkene(s) (and hydrogen) as products OR has alkenes and hydrogen as products e.g. $C_{15}H_{32} \rightarrow C_{11}H_{24} + 2C_2H_4$ $C_{15}H_{32} \rightarrow C_6H_{12} + C_9H_{18} + H_2$ IGNORE state symbols
		(ii)	(idea that) any carbon–carbon bond (in the chain) can break ✓	1	 ALLOW carbon chain can break in many different places ALLOW the position of breakdown of the carbon chain is random ALLOW the carbon chain can break in many different places ALLOW carbon chain can split in many different places Carbon chain is cracked in many places is not sufficient Molecule can break anywhere is not sufficient / cannot control where the molecule breaks is not sufficient Molecule can form many different chain lengths is not sufficient

Question		on	Answer	Marks	Guidance
1	(c)	(i)	Any cyclic hydrocarbon with eight carbon atoms in all \checkmark	1	ALLOW correct structural OR displayed OR skeletal formula
			eg		OR mixture of the above (as long as unambiguous)
					ALLOW equation with the correct product
					DO NOT ALLOW if any other extra structure is included which is incorrect
			CH ₃		DO NOT ALLOW 'aromatic cyclooctatetraene' but ALLOW this as a normal structural formula
					IGNORE hydrogen as an extra product
			CH3		IGNORE any name given

Question		on	Answer	Marks	Guidance
1	(c)	on (ii)	Cyclic hydrocarbons promote efficient combustion ✓	1	Guidance The answer must relate to combustion or burning ALLOW cyclic hydrocarbons allow smoother burning OR cyclic hydrocarbons increase octane number OR cyclic hydrocarbons reduce knocking OR cyclic hydrocarbons are less likely to produce pre-ignition OR cyclic hydrocarbons are more efficient fuels OR cyclic hydrocarbons burn better OR easier to burn OR cyclic hydrocarbon combust more easily OR improves combustion DO NOT ALLOW cyclic hydrocarbons ignite more easily ALLOW ora for straight chain hydrocarbons IGNORE cyclic hydrocarbons increase volatility of fuel IGNORE cyclic hydrocarbons have a lower boiling point Cyclic hydrocarbons are a better fuel on their own is NOT sufficient Cyclic hydrocarbons burn more cleanly on their own is NOT
			Total	9	

Q	uesti	on	Answer	Marks	Guidance
2	(a)	(i)	E and H ✓	1	ALLOW pentan-2-ol and 2-methylbutan-2-ol
		(ii)	H✓	1	ALLOW 2-methylbutan-2-ol
		(iii)	F✓	1	ALLOW propan-1-ol
	(b)	(i)	C₅H ₁₀ O ✓	1	ALLOW any order of atoms
					DO NOT ALLOW C_5H_9OH
		(ii)	2-methylpentan-3-ol 🗸	1	ALLOW 2-methylpentane-3-ol
					ALLOW absence of hyphens or use of commas
					ALLOW space between methyl and pentan
					DO NOT ALLOW 2-methylpent-3-ol OR 2-methypentan-3-ol OR 2-metpentan-3-ol, 4-methylpentan-3-ol etc
	(c)		(series of compound) with same functional group \checkmark	2	IGNORE with same or similar chemical properties OR same or similar chemical reactions
					IGNORE references to physical properties or named physical properties vary with an observable trend.
					IGNORE have similar or the same physical properties
			and each successive member differing by $CH_2 \checkmark$		IGNORE has same general formula
					ALLOW each subsequent member varying by CH_2
					DO NOT ALLOW have the same empirical formula OR have the same molecular formula

Qı	uestic	on	Answer	Marks	Guidance
3	(a)		alkene 🗸	2	ALLOW carbon–carbon double bond OR a C-C double bond
					A double bonded carbon is not sufficient
					C=C is not sufficient
					Carbon-carbon multiple bond is not sufficient
			ester ✓		Ketone / carbonyl / aldehyde / carboxylic acid contradicts the ester mark
	(b)		contains a C=C bond ✓	1	Contains a double bond is not sufficient
	()				Carbon-carbon multiple bond is not sufficient
					DO NOT ALLOW contains a C=O bond
	(0)		(from) propage (to) polourloss of	1	ALLOW shades of grange OP vollow OP brown
	(0)				ALLOW shades of orange or yellow OR brown
					DO NOT ALLOW red alone
					DO NOT ALLOW any response that includes precipitate OR
					solid, irrespective of colour
					De Not Allow clear for colouriess
	(d)	(i)	Same structural formula AND different arrangement (of atoms) in space OR different	1	ALLOW have the same structure/displayed formula/skeletal formula
			spatial arrangement ✓		DO NOT ALLOW same empirical formula OR same general formula
					Stereoisomers have the same formula or molecular formula is not sufficient
					Reference to <i>E</i> / <i>Z</i> isomerism or optical isomerism is not sufficient

F322/0 ⁻	1
---------------------	---

Question		on	Answer	Marks	Guidance
3	(d)	(ii)		1	 Any writing must not contradict the diagram IGNORE any other feature of the structure drawn ALLOW the J will be the <i>E</i> isomer and I is the <i>Z</i> isomer ALLOW the J will be the <i>trans</i> isomer and I is the <i>cis</i> isomer ALLOW a description, eg the other isomer will have (carbon) chains diagonally arranged across the C=C or the other isomer will have hydrogen atoms diagonally arranged across the C=C or the other isomer will have hydrogen atoms diagonally arranged across the C=C bond DO NOT ALLOW draw <i>trans</i> but label as <i>cis</i>
	(e)	(i)	(Enthalpy change that occurs) when one mole of a substance ✓ completely combusts OR reacts fully with oxygen ✓	2	 ALLOW energy required OR energy released ALLOW (energy change) when one mole of an element / compound / molecule / reactant DO NOT ALLOW one mole of reactants / product / substances / fuel / atoms ALLOW combusts in excess oxygen ALLOW burns in excess oxygen DO NOT ALLOW combust in excess air IGNORE fully oxidised IGNORE any conditions stated

Question		Answer	Marks	Guidance
3 (e)	(ii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 7.06(42), award 2 marks. IF answer = 7.1, award 1 mark.	2	
		q = 50.0 × 4.18 × 33.8 OR 7064.2 (J) ✓ = 7.06(42) (kJ) ✓		ALLOW 7.06 up to calculator value of 7.0642 correctly rounded DO NOT ALLOW ECF from marking point 1 IGNORE negative sign in answer
	(iii)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = $0.005(00)$, award 2 marks. $M_r = 268.0 \checkmark$ amount used = $0.005(00)$ (mol) \checkmark	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW 268 ALLOW 5×10^{-3} ALLOW ECF from incorrect M_r IGNORE trailing zeros
	(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -1413, award 3 marks. IF answer = 1413, award 2 marks. $\Delta H = \frac{\text{answer to (ii)}}{\text{answer to (iii)}} \text{ OR } \frac{7.0642}{0.005} \checkmark$ 1413 \checkmark minus sign (this is an independent mark) \checkmark	3	 IF there is an alternative answer, check to see if there is any ECF credit possible using working below ALLOW ECF from (ii) and (iii) ALLOW 1410 up to calculator value of 1412.84 correctly rounded ALLOW answers in standard form 1.41 x 10³ up to calculator value of 1.41284 x 10³ correctly rounded Answer must be at least three significant figures ALLOW 1412 if answer to (ii) is 7.06 ALLOW 1420 if answer to (ii) is 7.1

June	2013	

Q	uestic	on	Answer	Marks	Guidance
3	(e)	(v)	incomplete combustion OR not sufficient oxygen available AND carbon is formed ✓	1	IGNORE soot is formed, carbon monoxide is formed or carbon dioxide is formed
	(f)		$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH \checkmark$	3	ALLOW correct molecular OR structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE state symbols
			use of yeast OR zymase ✓		Enzyme is not sufficient DO NOT ALLOW acid catalyst
			anaerobic OR absence of oxygen OR any temperature between 20 and 45 °C OR water OR aqueous ✓		If there is a contradiction or an incorrect answer in any condition given then do not award this mark.
					ALLOW room temperature Temperature quoted must include unit
					ALLOW conditions shown in the equation
					IGNORE warm temperature IGNORE heat / warm
					Body temperature is not sufficient A limited supply of oxygen is not sufficient
					IGNORE low pressure OR atmospheric pressure DO NOT ALLOW high pressure OR a pressure above 2 atmospheres
			Total	19	

Q	Question		Answer	Marks	Guidance
4	(a)	(i)	correct curly arrow from double bond to iodine atom and curly arrow from the I–Br bond to the bromine atom \checkmark correct carbonium ion OR correct carbocation \checkmark correct curly arrow from bromide ion to the (positive) carbon \checkmark $H \rightarrow CH_3 \rightarrow H \rightarrow CH_3 \rightarrow $	3	Curly arrow must start from bond and go to correct atom DO NOT ALLOW partial charges on carbon–carbon double bond DO NOT ALLOW ō+ on carbon atom The positive charge must be associated with the carbon atom and not with a bond Make certain the carbonium ion includes the iodine atom Curly arrow must come from any lone pair or the negative sign of the bromide ion The lone pair on the bromide ion does not need to be shown
		(ii)	Electrophilic addition ✓	1	
		(iii)	$H = CH_{3}$ $H = C = C = H$ $H = C = C = H$ $H = H$ $H = H$ $H = H$	1	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) eg CH ₂ BrCHICH ₃ IGNORE any name given

Que	stion	Answer	Marks	Guidance
	b) (i)	Ultraviolet OR UV ✓	1	ALLOW high temperature OR 300 °C IGNORE light/radiation DO NOT ALLOW any catalyst
	(ii)		7	Use the SEEN annotation on page 11 if blank or no credit can be given
		(free) radical substitution ✓		IGNORE any state symbols in equations Radicals do NOT need a single dot
		$IBr \rightarrow Br + I \checkmark$		IGNORE dots
		homolytic fission 🖌		DO NOT ALLOW homolytical fission Heterolytic anywhere in the answer contradicts this mark
		(Propagation steps) Br + $CH_4 \rightarrow HBr + CH_3 \checkmark$		IGNORE I + $CH_4 \rightarrow HI + CH_3$
		$CH_3 + IBr \rightarrow CH_3I + Br \checkmark$		IGNORE $CH_3 + IBr \rightarrow CH_3Br + I$ DO NOT ALLOW equations with H OR any other incorrect equation (i.e. not one of the four propagation steps shown)
		(Termination steps) $I + CH_3 \rightarrow CH_3I$ OR Br + Br \rightarrow Br ₂ OR I + I \rightarrow I ₂ OR Br + CH ₃ \rightarrow CH ₃ Br OR CH ₃ + CH ₃ \rightarrow C ₂ H ₆ OR I + Br \rightarrow IBr \checkmark		ALLOW any other suitable termination steps DO NOT ALLOW termination steps with H
		QWC propagation linked to correct equations Br + CH ₄ \rightarrow HBr + CH ₃ CH ₃ + IBr \rightarrow CH ₃ I + Br AND initiation linked to correct equation IBr \rightarrow Br + I \checkmark		QWC can only be given if marking points 2, 4 and 5 have been awarded
		Total	13	

Q	Question		Answer	Marks	Guidance
5	(a)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = -4596, award 3 marks. IF answer = +4596 award 2 marks.	3	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			(–)116 ✓		ALLOW 116 OR -4(+54) -5(-20) OR -216 + 100
			(−)4480 ✓		ALLOW 4480 OR 4(-394) + 12(-242) OR -1576 - 2904
			–4596 ✓		ALLOW ecf from $\Delta H_{\text{products}} - \Delta H_{\text{reactants}}$ ALLOW for 2 marks (+)4596 (cycle the wrong way round) OR -4364 ($\Delta H_{\text{reactants}}$ the incorrect sign) OR (+)4364 ($\Delta H_{\text{products}}$ the incorrect sign) OR -752 (moles not used for products) OR -4514 (moles not used for reactants) ALLOW for 1 mark
					 (+)752 (moles not used for products and the cycle the wrong way round) OR (+)4514 (moles not used for reactants and the cycle the wrong way round) OR -670 (moles not used for reactants and products) Note: There may be other possibilities

Qı	uesti	on	Answer	Marks	Guidance
5	(b)	(i)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = +820, award 2 marks. IF answer = -820 or +1640 award 1 mark. amount of N ₂ O = 10 (mol) \checkmark	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			enthalpy change = (+)820 ✓		ALLOW ECF, ie moles of $N_2O x$ enthalpy of formation
		(ii)	(+)82 ✓	1	
		(iii)	(+)283 ✓	1	
	(c)		$O_3 \rightarrow O_2 + O$ AND $O + O_2 \rightarrow O_3 \checkmark$	2	ALLOW $O_3 \rightleftharpoons O_2 + O$ ALLOW $O_3 \rightarrow O_2 + O$ is reversible ALLOW $O + O_2 \rightarrow O_3$ is reversible IGNORE dots IGNORE other equations involving ozone, eg $O + O_3 \rightarrow 2O_2$
			rate of ozone decomposition (almost) equals rate of ozone formation \checkmark		IGNORE comments about an equilibrium ALLOW rate of forward reaction is similar to the rate of the backward reaction if marking point 1 is awarded
	(d)		$NO + O_3 \rightarrow NO_2 + O_2 \checkmark$	2	
			$NO_2 + O \rightarrow NO + O_2 \checkmark$		ALLOW NO ₂ + O ₃ \rightarrow NO + 2O ₂ \checkmark IGNORE dots IGNORE O + O ₃ \rightarrow 2O ₂ IGNORE 2O ₃ \rightarrow 3O ₂
			Total	11	

Qı	lestic	on	Answer	Marks	Guidance
6	(a)	(i)	256 ✓	1	
		(ii)	S ₈ ✓	1	ALLOW ${}^{32}S_8 \text{ OR } {}^{32}_{16}S_8$
					DO NOT ALLOW ${}^{33}S_8$ OR ${}^{30}_{16}S_8$ etc
		(iii)	S₄ ⁺ ✓	1	Positive ion must be present
					ALLOW ${}^{32}S_4^+$ OR ${}^{32}_{16}S_4^+$
					DO NOT ALLOW ${}^{33}S_4^+$ OR ${}^{30}_{16}S_4^+$ etc
	(b)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 195.2, award 2 marks. IF answer = 195.16 award 1 marks. $= \frac{(194 \times 33) + (195 \times 34) + (196 \times 25) + (198 \times 8)}{100} \checkmark$ 195.2 \checkmark	2	195 on its own with no working scores 0 marks
	(c)		Monitor air pollution OR breathalysers ✓	1	 ALLOW measure the concentration or abundance of atmospheric pollutants ALLOW measure concentration of named atmospheric pollutant ALLOW monitoring of gases in car exhaust fumes ALLOW drug detection or drug identification IGNORE night vision goggles, identifying gases on distant planets / ice samples

Q	uestior	Answer	Marks	Guidance
Q 6	(d)	M Answer mole ratio C : H : O 66.7 66.7 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 11.1 12.0 0 11.1 11.3 12.0 0 11.1 11.3 12.0 0 11.1 11.3 12.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Marks 5	Guidance PLEASE LOOK AT THE SPECTRA AND ABOVE THE SPECTRA FOR POSSIBLE ANSWERS ALLOW two marks for 72 x 66.7/100 = 48/12 = 4 (C) 72 x 11.1/100 = 8 = 8 (H) 72 x 22.2/100 = 16 = 1 (O) ALLOW C=O or carbonyl since has absorbance within the range 1640 to 1750 cm ⁻¹ ALLOW C=O or carbonyl since has absorbance within the range 1640 to 1750 cm ⁻¹ ALLOW c=O or carbonyl since has absorbance within the range 1640 to 1750 cm ⁻¹ ALLOW ce=O or carbonyl since has absorbance within the range 1640 to 1750 cm ⁻¹ ALLOW colspan="2">Ce or carbonyl since has absorbance within the range 1640 to 1750 cm ⁻¹ ALLOW colspan="2">Ce or carbonyl since has absorbance within the range 1640 to 1750 cm ⁻¹ ALLOW reference to R aldehyde linked to correct absorbance ALLOW 'could be aldehyde, ketone, carboxylic acid, ester (or amide) because of absorbance between range 1640 to 1750 cm ⁻¹ (ie direct quote from the data book) DO NOT ALLOW reference to M being a carboxylic acid, ester or amide unless they are included in a list with aldehyde/ketone in which case IGNORE carboxylic acid/ester/amide IGNORE reference to C—O / absence of O—H DO NOT ALLOW has O—H ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous)
		$ \begin{array}{c} $		eg $CH_3CH_2CH_2CHO$, $CH_3COCH_2CH_3$ OR $(CH_3)_2CHCHO DO NOT ALLOW C_3H_7CHOIGNORE incorrect namecorrect name on its own is not sufficient$
		Total	11	

Qu	esti	on	Answer	Marks	Guidance
7	(a)		N ✓	1	ALLOW CF ₃ CFCl ₂
	(b)	(i)	S ✓	1	ALLOW CH ₃ CHBrCH ₂ CHICH ₃
		(ii)	curly arrow from HO ⁻ to carbon atom of C–Br bond \checkmark Dipole shown on C–Br bond, C ^{δ^+} and Br ^{δ^-} , and curly arrow from C–Br bond to the halogen atom – arrow must be very	4	The curly arrow must start from the oxygen atom of the OH ⁻ , and must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow came from negative charge DO NOT ALLOW attack by KOH or K ⁺ OH ⁻
			close to the bond ✓		
			correct products of the reaction – not ambiguous with the $C_{3}H_{7}\checkmark$		ALLOW S _N 1
			$C_{3}H_{7}$ $C_{3}H_{7}$ C_{H} $Br^{\delta-}$ H OH		Dipole shown on C-Br bond, $C^{\delta+}$ and $Br^{\delta-}$, and curly arrow from C-Br bond to the halogen atom – arrow must be very close to the bond \checkmark Correct carbocation drawn AND curly arrow from HO ⁻ to the carbocation (the curly arrow must start from the oxygen atom of the OH ⁻ , and must start either from a lone pair or from the negative charge. No need to show lone pair if curly arrow came from negative charge) \checkmark Correct products of the reaction – not ambiguous with the C ₃ H ₇ \checkmark
			Н СH₃CH₂CH₂ — С — ОН + Вr [–] Н		nucleophilic substitution 🗸
			nucleophilic substitution \checkmark		

Q	uesti	on	Answer	Marks	Guidance
7	(b)	(iii)	C-I bond is weaker than C-Br bond OR C-I has a lower bond enthalpy than C-Br bond OR C-I bond is longer than C-Br bond AND C-I bond is easier to break than C-Br bond OR less energy is needed to break the C-I bond ✓	1	Answer must refer to the correct bond ALLOW ora IGNORE references to electronegativity
	(c)		HC/ + CH ₃ CHCHCH ₃ → CH ₃ CH ₂ CHC/CH ₃ Correct structural formula of product \checkmark Equation with structural formulae \checkmark	2	Must use structural formulae for both organic compounds in the equation ALLOW CH ₃ CH=CHCH ₃ for but-2-ene ALLOW two marks for correct equation with structural formulae ALLOW one mark for correct equation with displayed formulae IGNORE any mechanisms
	(d)		HCFCs OR hydrocarbons OR HFCs ✓	1	ALLOW alkanes DO NOT ALLOW specific alkanes
			Total	10	

F322/01

June	2013
------	------

Question		Answer	Marks	Guidance
8	(a)	H CN H CN CC	1	 ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) ALLOW two or more repeat units but has to be a whole number of repeat units ALLOW vertical bond to CN to any part of the CN End bonds MUST be shown as either dotted or normal line IGNORE brackets IGNORE n
	(b)	All the reactants are made into the desired product OR it is an addition reaction ✓	1	ALLOW there are no waste (products) OR there are no by- products OR only one product is made ALLOW an addition polymer is made DO NOT ALLOW all the products are useful IGNORE additional reaction

Question		on	Answer	Marks	Guidance
8	(c)		QWC – Linking effect with explanation (as temperature rises) position of equilibrium changes to minimise effect of temperature rise by absorbing energy OR (as pressure rises) position of equilibrium changes to minimise the pressure increase by reducing the pressure and making fewer gas molecules ✓	5	
			as temperature rises the position of equilibrium shifts to the left AND increase in pressure shifts the equilibrium to the left \checkmark		ALLOW suitable alternatives for 'to the left' eg moves to the reactant side OR towards $C_3H_6(g)$ or $NH_3(g)$ or O_2 OR moves in reverse direction IGNORE responses in terms of rate
			relates change with temperature to the (forward) reaction being exothermic OR reaction releases energy or heat OR		This mark is dependent on correct change in position of equilibrium
			reverse reaction is endothermic OR reverse reaction takes in heat or energy ✓		Moves towards the endothermic direction is not sufficient
			change with pressure because there are fewer moles of reactants OR more moles of products \checkmark		ALLOW fewer molecules of reactant This mark is dependent on correct change in position of equilibrium
			removing the catalyst does not change the position of equilibrium \checkmark		ALLOW equilibrium does not move OR catalyst has no effect on the equilibrium

Question		on	Answer	Marks	Guidance
8	(d)		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 95.5, award 2 marks.	2	IF there is an alternative answer, check to see if there is any ECF credit possible using working below
			actual amount propenenitrile is 210 (mol) ✓		ALLOW theoretical mass of propenenitrile = 11660 g OR 11.66 kg ALLOW 11700 OR 11.7kg
			% yield = 95.454545 ✓		ALLOW 95 up to calculator value of 95.454545 correctly rounded up
					ALLOW 95 up to calculator value of 95.128205 correctly rounded up if 11.7kg is used'
					ALLOW ecf from wrong actual mass or actual amount
					DO NOT ALLOW ecf if percentage yield is above 100%

Question	Answer	Marks	Guidance
(e)	Boltzmann distribution	7	
	Correct drawing of one Boltzmann distribution (could be temperature or catalyst) ✓		Look at the first Boltzmann distribution on the paper: If it is the temperature one then both curves will have to be correct
			Boltzmann distribution – must start at origin and must not end up at 0 on y-axis ie must not touch x-axis
			ALLOW a slight inflexion in the Boltzmann curve
	axes labelled (number of) molecules and energy ✓		ALLOW particles instead of molecules DO NOT ALLOW atoms instead of particles or molecules DO NOT ALLOW number of particles at activation energy DO NOT ALLOW enthalpy ONLY penalise the incorrect use of atoms (instead of molecules or particles) the first time it is seen
	increasing the temperature		
	Correct drawing of Boltzmann distribution at two different temperatures with higher and lower temperature clearly identified \checkmark (number of) molecules E_a higher temperature energy more molecules with energy		Maximum of curve for higher temperature to right AND lower than maximum of lower temperature curve AND above lower temp line at higher energy as shown in diagram below Higher temperature line should intersect the lower temperature only once

Question	Answer	Marks	Guidance
	Adding a catalyst		
	(number of) molecules energy extra molecules with energy above E_a		ALLOW E_c OR E_{cat} for activation energy of catalysed reaction
	idea that activation energy is lowered with a catalyst \checkmark		ALLOW activation lowered shown on Boltzmann distribution diagram
	Collision theory reaction is faster with catalyst AND when temperature is increased ✓		
	Greater proportion of molecules with energy above activation energy (with increased temperature or when catalyst is used) ✓		ALLOW more molecules with energy above activation energy OR more molecules that overcome the activation energy OR more molecules have enough energy to react ALLOW this marking point once either in terms of using a catalyst or increasing the temperature
	more effective collisions OR more successful collisions (with increased temperature or when catalyst is used) ✓		ALLOW this marking point once either in terms of using a catalyst or increasing the temperature ALLOW more collisions involving particles with energy above the activation energy More collisions per second is not sufficient
	Total	16	

PMT

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

